BBA 72927

Cholate-soluble and -insoluble iron binding components of rabbit duodenal brush-border membrane. Relevance to Fe²⁺ uptake by brush-border membrane vesicles

Robert J. Simpson and Timothy J. Peters

Division of Clinical Cell Biology, MRC Clinical Research Centre, Watford Road, Harrow, Middlesex, HA1 3UJ (U.K.)

(Received January 27th, 1986)

Key words: Fe²⁺ binding; Brush-border membrane; Fe²⁺ absorption; (Rabbit intestine)

Fe²⁺ uptake by brush-border membrane vesicles from rabbit duodenum has been investigated and found to show similar qualitative properties to those previously demonstrated with mouse proximal intestine brush-border membrane vesicles (Simpson, R.J. and Peters, T.J. (1986) Biochim. Biophys. Acta 856, 109–114). In particular, a relatively low affinity ($K_{m_{(app)}}$ approx. 83 μ M), NaCl and pH sensitive transport component is present. The disruption of ⁵⁹ Fe²⁺-laden vesicles with sodium cholate, followed by gel filtration or centrifugal analysis reveals that cholate insoluble material ($M_r > 10^6$) is the major destination for ⁵⁹ Fe²⁺ taken up by intact vesicles. Analysis of cholate extracts for Fe²⁺ binding ability reveals a single high-capacity (49.8 ± 15.6 nmol/mg vesicle protein (S.E., n = 3)), high-affinity ($K_{d_{(app)}}$ less then 5 μ M) binding component with an M_r equivalent to approx. 10^4 on gel filtration in the presence of cholate. This binding component is extracted into chloroform/methanol (2:1, v/v) is relatively heat and protease resistant and thus appears to be a lipid.

Introduction

Understanding of the biochemistry of iron absorption is currently lacking. In particular, the mechanism and regulation of the transport of inorganic iron across the brush-border membrane is ill understood.

Cox and O'Donnell ([1-3], have investigated this process by fractionating ⁵⁹Fe²⁺-labelled rabbit duodenal brush-border membrane vesicles. They found a detergent soluble ⁵⁹Fe²⁺-labelled glycoprotein. No demonstration of membrane carrier activity has been made for this material and no Fe²⁺ binding properties of the purified material were reported. The significance of this component of the brush-border membrane in the transport of

quantities available and because frozen material was found to be unsuitable for iron uptake studies [6]. Frozen rabbit brush-border membranes vesicles have been used successfully for iron up-

take studies [7].

Abbreviation: Hepes: 4-(2-hydroxyethyl)-1-piperazineethane-sulphonic acid.

0005-2736/86/\$03.50 © 1986 Elsevier Science Publishers B.V. (Biomedical Division)

re-interpreted in the light of recent studies that have revealed the composite nature of Fe^{2+} uptake by brush-border membrane vesicles [4,5]. We recently demonstrated that Fe^{2+} transport by mouse brush-border membrane in vitro is mediated by a low-affinity ($K_{m_{\text{(app)}}}$ 60–90 μ M), NaCl-sensitive process with a pH optimum of 6.8–6.9. We observed that sodium cholate extracts of mouse brush-border membrane vesicles contain pH- and

NaCl-sensitive Fe²⁺ binding components [5].

Mouse is, however, a poor source of material for the purification of putative Fe²⁺ carriers from

brush-border membrane. This is because of small

Fe²⁺ by brush-border membrane vesicles must be

In this paper rabbit duodenal brush-border membrane vesicles prepared from frozen gut and stored frozen are shown to exhibit Fe²⁺ uptake properties similar to those previously reported for fresh mouse and rabbit duodenal vesicles. Cholate-soluble and -insoluble Fe²⁺ binding components of the vesicles are examined for Fe²⁺ binding both in situ and in their isolated forms.

Materials and Methods

Materials. Sepharose CL6B and Sephadex G-50 (medium) were obtained from Pharmacia (Uppsala, Sweden), sodium cholate was obtained from Sigma and used without further purification. Chloroform and methanol (Analar grade, BDH) were redistilled before use. Cyanocobalamin was from Duncan Flockhart&Co. Ltd. (Greenford, U.K.), horse spleen ferritin was from Calbiochem (La Jolla, CA, U.S.A.) and Blue dextran 2000 was from Pharmacia. Other reagents or solvents were Analar grade from Sigma or BDH. Sagatal (sodium pentabarbitone B.P.) was from May and Baker Ltd. (Dagenham, U.K.). Proteases were from Sigma (Type XXI, from Streptomyces griseus (Pronase), Type X (Thermolysin) and Chymotrypsin).

General Methods. Protein concentrations were determined by the modified Lowry method [8]. Protease digestion was performed in 0.1 M mannitol, 0.1 M NaCl, 20 mM Na-Hepes (pH 7.4) at 37°C and for thermolysin, 1 mM CaCl₂ was added. Electron microscopy was performed as described in Ref. 6.

Preparation of brush-border membrane vesicles. Brush-border membrane vesicles were prepared from frozen rabbit duodenum by the method of Kessler et al. [9] essentially as described by Simpson and Peters [6]. The proximal 50 cm of small intestine was removed within 30 min of death from rabbits, killed by an overdose of sodium pentabarbitone. The segment was flushed with 100 ml of ice-cold 0.15 M NaCl then stored at -70 °C. Brush-border membrane vesicles were prepared typically from approx. 20 g of tissue (1 duodenum) which was thawed in 300 mM mannitol, 12 mM Na-Hepes (pH. 7.1). The duodenum was cut open and spread, mucosal surface upwards, on a cold plastic dish. Mucus and adherent food particles were removed by blotting with tissue paper. The mucosa was scraped off with a glass slide and suspended in 150 ml of ice-cold 50 mM mannitol, 2 mM Na-Hepes (pH 7.1). The mixture was homogenized for 2 min at full speed in a pre-cooled Waring blender. Subsequent procedures were conducted at 0-4°C. Solid MgCl₂ (10 mM final concentration) was added to the homogenate which was gently stirred for 20 min before centrifugation at $3000 \times g$ for 10 min. The supernatant was recentrifuged for 30 min at $40000 \times g$ and the resulting vesicle pellet was suspended, by repeated passage throught a 21 gauge needle, in 80 ml of resuspension buffer (0.1 M mannitol, 0.1 M NaCl, 0.1 mM MgSO₄, 20 mM Hepes (pH 7.4), filtered through a 0.22 μ m Millipore filter before use). The suspension was centrifuged for 15 min at $6000 \times g$ and the supernatant recentrifuged at $40\,000 \times g$ for 30 min to sediment the brushborder membrane vesicles. The final vesicle pellet was resuspended as above in 1-2 ml of resuspension buffer to a protein concentration of 10-20 mg/ml. Similar procedures to this have been widely used for the preparation of brush-border vesicles for transport studies [6,7,9]. These preparations are typically 13-20-fold enriched in brush-border marker enzymes. Vesicle suspensions were used immediately or stored at -70°C.

⁵⁹Fe²⁺-labelling of vesicles and preparation of cholate extracts. Vesicle suspensions were thawed at 37°C and were incubated for 5 or 60 min at 37°C with 91 μM ⁵⁹Fe²⁺, 1.8 mM sodium ascorbate in resuspension buffer or the same buffer without MgSO₄. Vesicles were collected by centrifuging for 30 min at $40000 \times g$ and resuspended in 6 ml of ice-cold 0.15 M NaCl followed by recentrifugation. The vesicle pellet was resuspended in resuspension buffer to a protein concentration of approx. 10 mg/ml. Solid sodium cholate was added to give a final concentration of 10% (w/v). After vortexing, the solution was found to clarify within approx. 2 min. The volume change accompanying this cholate solubilization process was less than 5%. The resulting mixture was either immediately applied to Sepharose CL6B columns or centrifuged for 1 h at $165\,000 \times g$. The supernatant (cholate extract) and pellet (cholate-insoluble material) were separated and this pellet was dispersed (passage through 21 gauge needle) in the same volume of resuspension buffer as the original

mixture occupied. The cholate extract contained approx. half $(54.2 \pm 4.4\% \ (m + \text{S.E.}, \ n = 7))$ of recovered protein (recovery, $91 \pm 9\% \ (m \pm \text{S.E.}, \ n = 7)$). Extracts and pellets were stored at -20°C if not used immediately. All centrifugation and extraction procedures were performed at $0-4^{\circ}\text{C}$.

Gel filtration analysis of cholate-solubilised vesicles and extracts. Gel filtration of solubilised vesicles and cholate extracts was performed on Sepharose CL6B (85×1.6 cm) and Sephadex G-50 (47 × 1 cm) columns equilibrated and eluted (13 ml/h and 17 ml/h, respectively) with 0.15 M NaCl, 11 mM sodium cholate, 10 mM Na-Hepes (pH 7.0 at 20°C). Fractions of 3.25 ml and 1.4 ml were collected from the Sepharose and Sephadex columns, respectively, and these were counted for ⁵⁹Fe (Beckman Gamma-7000) or assayed for Fe²⁺ binding (see below). Absorbance was monitored at 280 nm with a Uvicord S (LKB, Bramma, Sweden). Markers used to calibrate the columns were ferritin, cytochrome c, cyanocobalamin, Phenol red, Blue dextran 2000 and ⁵⁹Fe²⁺/ascorbate (1:20, molar ratio) solutions. Column fractions were concentrated by ultrafiltration and flow dialysed over a YM-2 filter (Amicon, Stonehouse, Glos., U.K.) with an Amicon UM2 ultrafiltration cell and stored at -20°C. All above procedures were performed at 4-6°C.

 59 Fe $^{2+}$ uptake and binding measured by Millipore filtration. Vesicle 59 Fe $^{2+}$ uptake was determined as described previously [4,5]. Briefly, vesicles were incubated at 37°C with 59 Fe $^{2+}$ -Na ascorbate (molar ratio 1:20) in 0.1 M mannitol, 0.1 M NaCl, 20 mM Na-Hepes (final pH 7.25). Uptake was terminated by rapid filtration (0.22 μm filter, Millipore filtration manifold catalogue No. XX2702550) of 50 μl of incubation mixture. The filter was immediately washed with 10 ml of ice-cold 0.1 mM Fe $^{2+}$, 2 mM sodium ascorbate, 0.15 M NaCl.

Fe²⁺ binding by column fractions or extracts was studied in the same medium with final cholate concentrations of less than 5.5 mM. The quantity of Fe²⁺ binding material was adjusted to yield uptake values of less than 10–20% of total medium radioactivity. Retention of ⁵⁹Fe-labelled proteins and column fractions by the filters was tested by incubation in 10 vol. of the same incubation medium (without ⁵⁹Fe²⁺-ascorbate) followed by

filtration and washing as above. Radioactivity retained by filters was determined by gamma counting in a Beckman Gamma-7000. Previous studies [5] have shown that cholate-soluble Fe²⁺-binding components of mouse proximal intestine brushborder membrane vesicles are retained by Millipore GSWP filters, provided low medium cholate concentrations are employed (less than approx. 0.25%).

 59 Fe $^{2+}$ uptake by cholate-insoluble vesicle components measured by centrifugation. Vesicles or resuspended cholate insoluble material were incubated with 59 Fe $^{2+}$ -ascorbate as for filtration assays (final volume 50 μl) for 5 or 60 min at 37 °C in 10 ml polycarbonate ultracentrifuge tubes. Solid sodium cholate was added (10% (w/v)) and the tubes vortexed. The tubes were immediately spun for 1 h at $165\,000 \times g$ at 4°C. The supernatant was removed and the tube carefully washed with distilled water (50 μl) without disturbing the pellet. Tube (with pellet) and supernatant (plus washings) were counted as above for 59 Fe.

Results and Discussion

⁵⁹Fe²⁺ uptake by frozen-stored rabbit duodenal brush-border membrane vesicles

Fig. 1A shows Fe²⁺ uptake by frozen-stored rabbit duodenal brush-border membrane vesicles as a function of time. Quantitatively, uptake is similar to that reported for fresh vesicles [1,2]. Overall uptake can be divided into a small, rapid, NaCl-insensitive and relatively pH-insensitive uptake and a large, slower, more pH-sensitive component. We have shown, with mouse brush-border membrane vesicles, that the larger component of uptake is consistent with a membrane transport process by the vesicles with intravesicular binding of Fe²⁺ [5].

Fig. 1B shows initial Fe²⁺ uptake by vesicles at two medium Fe²⁺ concentrations as a function of pH. The variability in uptake rates by different vesicle preparations can be noted by comparing Figs. 1A and 1B. This variability has been noted with fresh mouse vesicles [4] and can be seen in previously published data obtained from fresh rabbit vesicles [1,2]. Qualitative observations are, however, highly reproducible. The pH optimum (7.0) in overall uptake is the same as was reported

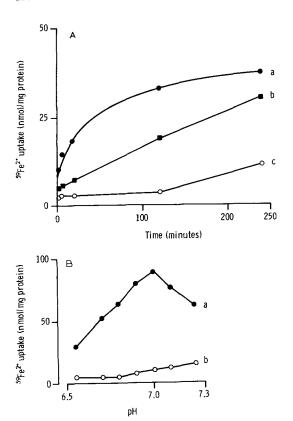
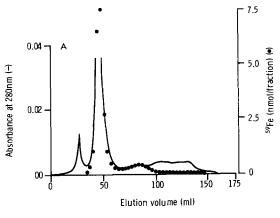



Fig. 1. 59 Fe $^{2+}$ uptake by frozen-stored rabbit duodenal brush-border membrane vesicles. (A) Vesicles were prepared from frozen rabbit duodenum as described in Materials and Methods and assayed for 59 Fe $^{2+}$ uptake by Millipore filtration [4]. (a) medium was 91 μ M 59 Fe $^{2+}$, 1.8 mM sodium ascorbate, 0.1 M NaCl, 0.1 M mannitol, 20 mM Hepes (final pH 7.25). Incubation was at 37°C, (b) as (a) except the final pH was 6.55, (c) as (a) except the final assay contained 1.8 M NaCl. (B) Uptake was determined after 1 min incubation as in (Aa) except the final pH was varied as in Ref. 5. (b) as (a) except 59 Fe $^{2+}$ was 9.1 μ M and sodium ascorbate 0.18 mM.

for fresh rabbit duodenal brush-border membrane vesicles [1] and is approx. 0.1 unit higher than reported for mouse vesicles [5]. High-affinity uptake (curve b, Fig. 1B) shows no pH optimum, as was noted with mouse vesicles. Studies of the dependence of uptake on medium Fe^{2+} , in the presence and absence of NaCl, reveal that NaCl-sensitive uptake has a $K_{\rm m_{(app)}}$ of approx. 80 μ M, similar to mouse vesicles [4]. Thus, all the major conclusions derived from extensive studies with mouse brush-border membrane vesicles can be

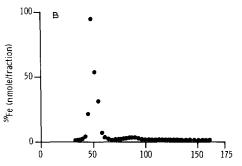


Fig. 2. Gel filtration analysis of cholate-disrupted rabbit brush-border membrane vesicles. (A) Vesicles were prepared and ⁵⁹Fe²⁺ labelled as described in Materials and Methods (incubation time 5 min). Vesicles, 0.5 ml, (4.6 mg protein) were labelled and, after washing, suspended in 0.5 ml of resuspension buffer (see Materials and Methods), sodium cholate, 50 mg, was added and the mixture vortexed and applied to a 85×1.6 cm Sepharose CL6B column equilibrated and eluted with 0.15 M NaCl, 11 mM sodium cholate, 10 mM Hepes (pH 7.0). (B) As (A) except the incubation time during ⁵⁹Fe²⁺ labelling was 60 min and the vesicle protein concentration was reduced to 0.85 mg/ml, with an 11-fold larger incubation volume, during the labelling. Subsequent procedures were identical to (2A).

obtained with frozen-stored rabbit brush-border membrane vesicles.

Studies with cholate extracts of mouse proximal intestine brush-border membrane vesicles revealed cholate extractable Fe²⁺ binding components [5]. We therefore set out to disrupt rabbit brush-border membrane vesicles, with and without prior ⁵⁹Fe²⁺ labelling and search for ⁵⁹Fe²⁺-labelled and ⁵⁹Fe²⁺-binding components of brush-border membrane vesicles.

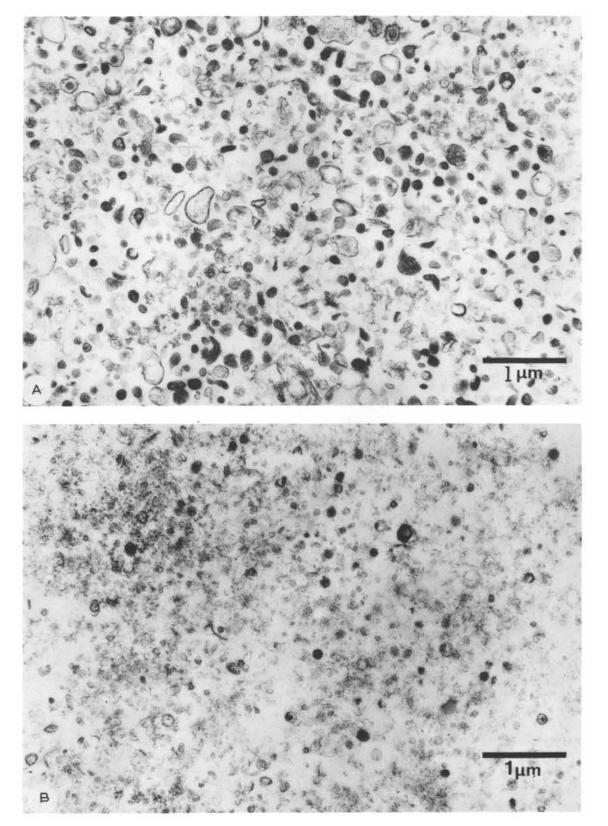


Fig. 3. Electron micrographs of A) intact rabbit brush-border vesicles preparation and (b) cholate-insoluble material. Vesicles and $165000 \times g$ cholate extract pellet were prepared as in Materials and Methods. Fixing and staining with uranyl acetate was as described in Ref. 6.

Fractionation of ⁵⁹Fe²⁺-labelled brush-border membrane vesicles

Fig. 2 shows the elution profile of 59 Fe from vesicles incubated for short (Fig. 2A) and long Fig. 2B) periods with 59 Fe²⁺ prior to cholate disruption and fractionation on Sepharose CL6B. The $A_{280\text{nm}}$ profiles for each experiment were similar. Comparison of Figs. 2A and 2B reveals that as the Fe²⁺ uptake proceeds, the very high molecular weight 59 Fe-labelled peak increases relative to the other labelled components. Electron micrographs of this material and also of $165\,000\times g$ pellets from cholate extractions reveal microvillus cores (Fig. 3). Also present are larger aggregates and occasional nondisrupted vesicles.

When centrifuged cholate extracts of ⁵⁹Fe-labelled vesicles were similarly chromatographed, a similar profile was obtained except that the large peak at approx. 48 ml elution volume was considerably reduced and was smaller than the peak at 85 ml. The major included ⁵⁹Fe-labelled peak of radioactivity (85 ml) had the elution position of horse spleen ferritin but elutes significantly earlier than the major Triton X-100 extractable ⁵⁹Fe peak reported by O'Donnell and Cox [3]. Ferritin contamination of brush-border membrane vesicle preparations would not be surprising and it is possible that ferritin is present inside brush-border membrane vesicles.

Column recoveries of 59 Fe²⁺ from such experiments were high (72 ± 6% S.E., n = 3) but consistently lower than recoveries obtained when high molecular weight 59 Fe-labelled material was rechromatographed on the same column (88–92% recovery) or when 59 Fe-labelled ferritin was chromatographed alone (100% recovery).

The high recovery of radioactivity from the 59 Fe-labelled vesicles suggests that the high molecular weight material contains the major 59 Fe²⁺ destination site(s) in the vesicle Fe²⁺ uptake process. The fact that the recoveries nevertheless differ significantly from 100% (p < 0.05) and are lower than rechromatographed column eluates suggests that other Fe²⁺ binding components are present which either do not elute from the Sepharose CL6B or lose their iron during the chromatography. Sepharose CL6B retains a high proportion (more than 90%) of 59 Fe- $^{2+}$ -ascorbate (1:20) when quantities similar to those employed

for Fig. 2A run as a marker. Any Fe²⁺-binding material with a dissociation constant in the μ M range would be expected to lose its Fe²⁺, due to mass action effects, on gel filtration chromatography. This dissociated Fe²⁺ would be likely to adsorb to the column, given the low recovery of ⁵⁹Fe²⁺-ascorbate. It is therefore necessary, particularly when searching for possible Fe²⁺ carrier moieties which may not have high ($K_{\text{d}_{\text{(app)}}}$ less than 1 μ M) affinity for Fe²⁺, to perform Fe²⁺ binding studies rather than just searching for Fe²⁺-labelled sites.

Fe²⁺-binding components of cholate-disrupted brush-border membrane vesicles

Fig. 4 shows the profile of 59 Fe²⁺ binding by column fractions (assayed by Millipore filtration after dilution of the cholate) from cholate-solubilised vesicle preparations. The predominant 59 Fe²⁺-binding peak occurs at a relatively low apparent molecular weight. The marker cytochrome c (M_r 12 500) elutes at a similar position (129 ml) to this peak.

The use of a filter binding assay to determine Fe²⁺-binding material depends on the assumption that proteins and other components of vesicles are retained by the filters. Studies with ⁵⁹Fe-labelled

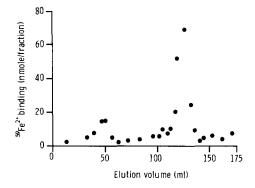
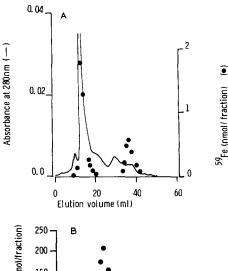


Fig. 4. 59 Fe²⁺ binding by gel filtration fractions from cholate-disrupted brush-border membrane vesicles. Unlabelled vesicles (1 ml, 9.1 mg protein) were disrupted with 100 mg of sodium cholate and loaded on a column as in Fig. 2. 59 Fe²⁺ binding to column fractions was determined after incubation of 5 μ l of column fraction with 50 μ l of 100 μ M 59 Fe²⁺, 2 mM sodium ascorbate, 0.1 M NaCl, 0.1 M mannitol, 20 mM Hepes (final pH 7.25) for 10 min at 37°C. Mixture was applied to a 0.22 μ m Millipore filter, washed and counted as for vesicle uptake studies (see Materials and Methods).


ferritin, lactoferrin and transferrin revealed that these proteins were retained between 50 and 100% by 0.22 µm Millipore filters, provided protein and cholate concentrations were kept low, similar to those employed in the assays for Fig. 4. Retention of ⁵⁹Fe-labelled vesicle components from experiments such as in Fig. 2 were examined in model ⁵⁹Fe²⁺ binding experiments. The predominant ⁵⁹Fe-labelled site was $91 \pm 4\%$ ($M \pm S.E.$, n = 6) retained. The minor peak (85 ml on Fig. 2) was at least 65% retained. Recovery of the main ⁵⁹Fe²⁺binding component (Fig. 4) was more difficult to assess. However, experiments where limiting amounts of ⁵⁹Fe²⁺ were incubated with the Fe²⁺ binding fractions showed that retention was at least 40%. These values allow a semi-quantitative analysis to be performed.

In order to further investigate the Fe²⁺-binding components of the vesicles, analysis of cholate extracts by Sephadex G-50 was undertaken. This gel filtration matrix was found to give better recoveries of ⁵⁹Fe²⁺-ascorbate, when chromatographed as a marker, than Sepharose CL6B (65% compared with 4%, respectively).

Fig. 5A shows the ⁵⁹Fe-labelling profile of a cholate extract of vesicles labelled as for Fig. 2A. Total recovery of ⁵⁹Fe (i.e. column eluate plus cholate insoluble material) was close to 100% (mean of three experiments, 99 ± 5% (S.E.)). The additional recovered ⁵⁹Fe (compared to Sepharose CL6B analyses) elutes in the same position (38 ml) as ⁵⁹Fe²⁺-ascorbate/incubation mixture chromatographed without vesicles.

Fig. 5B shows the 59 Fe²⁺-binding profile for a similar experiment except that the prior 59 Fe-labelling was omitted. The single Fe²⁺-binding peak again elutes at a similar position to the M_r 12 500 marker cytochrome c (22 ml). The recovery of 59 Fe²⁺-binding capacity could be measured by assay of the original extract for 59 Fe²⁺ binding under similar conditions of final assay cholate concentration. The recovery of binding capacity of extracts in the low molecular weight peak was again high (78 \pm 15%, S.E. (n = 6)), suggesting that the predominant Fe²⁺ binding site in cholate extracts of brush-border membrane vesicles is the material of apparent M_r of approximately 10 000.

In another series of experiments, cholate extracts were labelled with varying amounts of

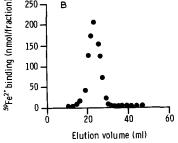


Fig. 5. Sephadex G-50 gel filtration analysis of cholate extracts of rabbit brush-border membrane vesicles. (A) Cholate extract (165 000 \times g supernatant, 10% cholate, w/v) from vesicles labelled and washed as in Fig. 2A were prepared as in Materials and Methods. Extract (0.5 ml, 6.15 nmol $^{59}\mathrm{Fe}^{2+}$) was applied to a 47 \times 1 cm Sephadex G-50 column equilibrated and eluted with 0.15 M NaCl, 11 mM sodium cholate, 10 mM Na-Hepes (pH 7.0). (B) As (A) except that 1 ml of vesicle extract was applied to the column without preincubation with $^{59}\mathrm{Fe}^{2+}$. $^{59}\mathrm{Fe}^{2+}$ binding was determined as in Fig. 4.

⁵⁹Fe²⁺-ascorbate, then fractionated on the Sephadex G-50 column. It was found that under no circumstances did significant amounts of ⁵⁹Fe appear in the region 20–35 ml. Assay of these fractions for ⁵⁹Fe binding revealed that the ⁵⁹Fe²⁺-binding material was still present. This suggests that the low molecular weight ⁵⁹Fe²⁺-binding material dissociates on gel filtration chromatography.

The characteristics of the low molecular weight ⁵⁹Fe²⁺-binding material

Fig. 6 shows the ⁵⁹Fe²⁺ uptake time-course for the low molecular weight and cholate-insoluble fractions. The uptake by low molecular weight

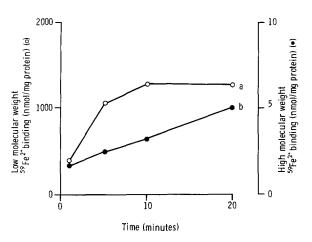


Fig. 6. ⁵⁹Fe²⁺ uptake by low and high-molecular weight vesicle components. Column fractions from Sepharose CL6B fractionation (a) 127 ml (low-molecular weight) and (b) 48 ml (high-molecular weight component) were incubated and Fe²⁺ uptake determined as described in Fig. 4.

material shows a rapid time-course, similar to cholate extracts of mouse brush-border membrane vesicles [5]. The time-course is consistent with a binding process. Uptake by cholate-insoluble material (Fig. 6) is slow after a small initial rapid component, and the linear phase continues for at

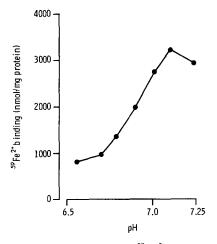


Fig. 7. pH dependence of ⁵⁹Fe²⁺ binding by cholate-soluble component of brush-border membrane vesicles. Fractions 21–31 ml from Sephadex G-50 fractionation of cholate extracts were combined and concentrated to 0.5 ml by ultrafiltration and flow dialysed against 10 vol. of 0.15 M NaCl (YM-2 filter). Uptake determinations were performed with material diluted 10-fold in resuspension buffer and incubated for 10 min in media as in Fig. 1B. Uptake was determined by Millipore filtration as in Fig. 6.

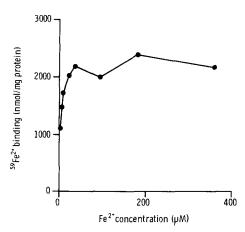


Fig. 8. Dependence of $^{59}\text{Fe}^{2+}$ uptake by cholate-soluble $^{59}\text{Fe}^{2+}$ -binding material on medium $^{59}\text{Fe}^{2+}$ concentration. $^{59}\text{Fe}^{2+}$ -binding material, prepared and diluted as in Fig. 7, was incubated for 10 min at 37 °C with various medium $^{59}\text{Fe}^{2+}$ concentrations and constant $^{59}\text{Fe}^{2+}/\text{ascorbate}$ ratios of 1:20. Uptake was determined as in Fig. 4.

least 1 h. Fig. 7 shows the pH dependence of the binding by low molecular weight material. Different preparations of low molecular weight material showed optima in the range 7.0–7.2. Fig. 8 shows that binding by this material is characterised by relatively high affinity ($K_{\rm dynn}$) less than 5 μ M).

Nature of the low molecular weight ⁵⁹Fe²⁺-binding material

The material was relatively stable to heat treatment, binding being decreased by less than 10% on boiling for 5 min. Prolonged heating (30 min at 80°C) led to a greater loss of binding $(53 \pm 15\%)$ (mean \pm S.E., n = 3)). Treatment with proteases failed to obtain 100% degradation. The most effective protease of three tested (chymotrypsin, thermolysin and pronase) was thermolysin, which produced little loss in binding after 19 h incubation at 37° C (mean $27 \pm 18\%$ (S.E., n = 4) loss with 450 μg/ml thermolysin. The concentration of this broad specificity protease employed here is very high (compare Ref. 10) and the loss of binding incomplete. The Fe²⁺-binding material showed no distinct band on sodium dodecylsulphate polyacrylamide gel electrophoresis (15% gel, 0.1% sodium dodecylsulphate, reducing conditions) after staining with Coomassie blue. A broad, diffuse staining at lower molecular weight than bovine pancreatic trypsin inhibitor (M_r approx. 6500)

was noted. The Fe²⁺-binding material was insensitive to sulphydryl reagent, with less than 5% loss in binding after 30 min incubation with 0.9 mM p-chloromercuribenzene-sulphonate at 37°C (pH 7.25). This, combined with the apparent inability of metallothionein to bind Fe²⁺ [11] indicates that it is unlikely that this protein accounts for the low molecular weight ⁵⁹Fe²⁺-binding material.

The material appears to be a hydrophobic component in that removal of detergent by passage down Sephadex G-50 (in the absence of cholate) resulted in aggregation, the ⁵⁹Fe²⁺-binding material appearing at the void volume of the column. Marked loss of ⁵⁹Fe²⁺ binding capacity was produced by chloroform/methanol extraction (greater than 80% loss after 3 extractions with 1 vol. of 2:1 chloroform/methanol). When chloroform/methanol extracts were evaporated under N₂ and resuspended in the column buffer (0.15 M NaCl, 10 mM Hepes (pH 7.0), 11 mM sodium cholate) by sonication, the ⁵⁹Fe²⁺-binding material was fully recovered (111 \pm 8% recovery, mean \pm S.E. for three experiments) suggesting the material may be a lipid. The apparent molecular weight of 10000 presumably represents that of a mixed cholate/lipid micelle.

The significance of ⁵⁹Fe²⁺ binding by cholate-extractable material in ⁵⁹Fe²⁺ uptake by intact brush-border membrane vesicles

As noted above, cholate-extract-bound ⁵⁹Fe²⁺ appears to be dissociated on gel filtration chromatography. Our experiments show that the majority of vesicle-bound ⁵⁹Fe²⁺ is in cholate-insoluble material. Fig. 6 suggests that, on cholate solubilisation, the uptake rate by cholate insoluble material is relatively slow. In order to further investigate the relationship of ⁵⁹Fe²⁺ uptake by cholate-insoluble material and the low molecular weight material in intact vesicles, ⁵⁹Fe²⁺ uptake by cholate-insoluble material was investigated by centrifugal analysis (Table I).

These experiments show that cholate-solubilised, but unfractionated, vesicles behave in a similar manner to the separated cholate-soluble and insoluble components, that is, the ⁵⁹Fe is taken up relatively slowly by cholate-insoluble material. This suggests that the slow uptake noted by cholate-insoluble material in Fig. 6 is not due to

TABLE I

$^{59}\mathrm{Fe^{2+}}$ UPTAKE BY CHOLATE-INSOLUBLE VESICLE COMPONENTS

Experiments. (a) Vesicles were incubated for the indicated time at 37°C with 90 μ M ⁵⁹Fe²⁺, 1.8 mM sodium ascorbate, 0.1 M NaCl, 0.1 M mannitol, 20 mM Na-Hepes (final pH 7.25). After incubation, vesicles were solubilised with 10% cholate and fractionated as described in Methods. (b) Cholate-insoluble material, prepared from the same vesicles as (a) and resuspended in the same buffer were incubated, treated with cholate and centrifuged as for (a). (c) Vesicles were incubated and treated as for (a) except that cholate was added before the ⁵⁹Fe²⁺-labelling incubation was performed. In the case of (b) the data were expressed relative to the original vesicle protein concentration prior to cholate extraction. Recovery of cholateinsoluble material which had been ⁵⁹Fe-labelled in situ in intact vesicles was $81 \pm 8\%$ (S.E., n = 5) after control incubation (lacking ⁵⁹Fe) and centrifugation. Total recovery of ⁵⁹Fe in these experiments was $100.1 \pm 0.4\%$ (S.E., n = 13).

Experiment	Incubation time (min)	Uptake of ⁵⁹ Fe ²⁺ in cholate-insoluble material (nmol per mg vesicle protein)
(a) Intact vesicles	5	30.4 ± 2.0 (3)
	60	56.7 ± 6.7 (4)
(b) Cholate-insoluble		
material	5	8.0 ± 2.3 (3) *
	60	17.6 ± 3.6 (3) **
(c) Cholate-disrupted		. ,
vesicles	5	8.4 ± 1.5 (3) *

^{*} p < 0.01 compared with intact vesicles (t = 5 min).

aggregation effects brought about the removal of cholate and lipid. It is also clear that intact vesicles behave differently from cholate-treated vesicles. In particular, ⁵⁹Fe rapidly accumulates in the cholate-insoluble site(s) in intact vesicles. It should be noted that these differences are not due to low recovery of cholate insoluble material.

These observations suggest that ⁵⁹Fe²⁺ uptake by intact vesicles is a complicated process of transport followed by binding inside the vesicles which is not explained by the separated binding components, even when re-mixed. It is, however, possible that dilution effects, caused by the opening of vesicles by cholate, are important. Alternatively, it may be that separation of Fe²⁺ from ascorbate by the intact vesicle membrane, allow-

^{**} p < 0.01 compared with intact vesicles (t = 60 min) (mean \pm S.E. for n experiments).

ing oxidation of Fe²⁺ to Fe³⁺, is important.

It is clear, however, that removal of cholatesoluble vesicle components markedly reduces the uptake rate by the cholate-insoluble residue and the major Fe²⁺-binding material removed by cholate may thus be responsible for Fe²⁺ transport across the brush-border membrane. The identity of this cholate extractable lipid is currently under investigation.

Conclusions

Fe²⁺ uptake by brush-border membrane vesicles may be mediated by a low molecular weight, cholate- and chloroform/methanol-extractable membrane component. The ultimate destination for Fe²⁺ taken up by vesicles is bound to cholate-insoluble vesicle components.

Acknowledgements

We thank Dr. T. Shah for assistance with gel electrophoresis, Ms. S.E. Ember for typing this

manuscript, and H. Grindley for electron micrographs. R.J.S. is an MRC training fellow.

References

- 1 Cox, T.M. and O'Donnell, M.W. (1981) Biochem. J. 194, 753-759
- 2 Cox, T. and O'Donnell, M. (1980) Biochem. Int. 1, 466-454
- 3 O'Donnell, M.W. and Cox, T.M. (1982) Biochem. J. 202, 107-115
- 4 Simpson, R.J. and Peters, T.J. (1985) Biochim. Biophys. Acta 814, 381-388
- 5 Simpson, R.J. and Peters, T.J. (1986) Biochim. Biophys. Acta 856, 109-114
- 6 Simpson, R.J. and Peters, T.J. (1984) Biochim. Biophys. Acta 772, 220-226
- 7 Marx, J.J.M. and Aisen, P. (1981) Biochim. Biophys. Acta 649, 297-304
- 8 Schacterle, G.R. and Pollack, R.L. (1973) Anal. Biochem. 51, 654–655
- 9 Kessler, M., Acuto, O., Storelli, C., Murer, H., Muller, M. and Semenza, G. (1978) Biochim. Biophys. Acta 506, 136-154
- 10 Bradshaw, R.A. (1969) Biochemistry, 8, 3871-3877
- 11 Kojima, N., Young, C.R. and Bates, G.W. (1982) Biochim. Biophys. Acta 716, 273-275